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Frenkel-Kontorova Model of Vacancy-Line Interactions on Ga���Si(112)
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We develop an exactly solvable microscopic model for analyzing the strain-mediated interaction
of vacancy lines in a pseudomorphic adsorbate system. The model is applied to Ga�Si(112) by
extracting values for the microscopic parameters from total-energy calculations. The results, which are
in good agreement with experimental observations, reveal an unexpectedly complex interplay between
compressive and tensile strain within the mixed Ga-Si surface layer.

PACS numbers: 68.55.Ln, 61.16.Ch, 71.15.Nc
When a material is grown pseudomorphically on a
lattice-mismatched substrate, the resulting strain field can
lead to self-organized structures with a length scale many
times the atomic spacing. One well known example
is the Ge�Si(001) dimerized overlayer system. The Ge
film is compressively strained (by 4% relative to the
bulk), and the system lowers its energy by creating dimer
vacancies in the surface layer; at the vacancy sites, the
exposed atoms in the second layer rebond to eliminate
their dangling bonds. The missing-dimer vacancies order
into vacancy lines (VLs) with 2 3 N periodicity, where
the optimal N depends on the Ge coverage [1]. Even
for coverages as low as a few monolayers, the concept of
elastic strain relaxation within a coherent pseudomorphic
Ge film is appropriate. For example, Tersoff showed
theoretically for a three-layer Ge film that the equilibrium
N corresponds to the vacancy density at which the
compressive stress from the Ge overlayer cancels the
tensile stress from the rebonded missing dimers [2].

For monolayer and lower coverages, the concept of
strain relaxation becomes problematic, because the strain
within a partial overlayer becomes difficult to define.
In this Letter we develop a model for analyzing such
situations and apply it to another VL system, Ga on
Si(112). We show that despite striking similarities in the
phenomenology, the underlying energetics of Ga�Si(112)
is rather distinct from Ge�Si(001). To make our treatment
physically transparent but also quantitatively accurate, we
develop an exactly solvable model of VL interactions in
which the microscopic parameters are extracted directly
from first-principles total-energy calculations. This model
contains only nearest-neighbor harmonic interactions but
reproduces the first-principles results quite accurately,
and thus allows for a particularly simple analysis of the
dominant interactions.

When Ga is deposited on Si(112) and annealed,
a well-ordered surface is formed consisting of large
(112)-oriented domains, as shown in Fig. 1. The VLs are
oriented horizontally in Fig. 1. Even at room tempera-
ture, the VLs show minimal thermal meandering—only
0031-9007�99�83(9)�1818(4)$15.00
single kinks (up or down by one lattice spacing) are
observed in scanning tunneling microscopy (STM). The
mean VL spacing in Fig. 1 is 5.2, with the distribution
sharply peaked around 5 and 6. The microscopic struc-
ture of VLs on Ga�Si(112) is shown in Fig. 2. Since Ga
is trivalent it prefers to adsorb at threefold surface sites.
The bulk-terminated Si(112) substrate, which may be re-
garded as a sequence of double-width (111)-like terraces
and single (111)-like steps, offers just such threefold sites
at the step edges, as shown in Fig. 2(b). A single Ga
vacancy leaves two step-edge Si atoms exposed, which
rebond to form a dimer. This model was first proposed
by Jung et al. [3] and subsequently confirmed by Baski
et al. [4] using STM and total-energy calculations. It
predicts that two adjacent Ga vacancies will be very
unlikely—because the three Si atoms exposed can form

FIG. 1. Empty-state STM image (300 3 300 Å) of
Ga�Si(112). The wedges mark the vacancy lines, which
are oriented along the �111� direction (and are interrupted by a
narrow monolayer-high terrace in the center of the figure).
© 1999 The American Physical Society



VOLUME 83, NUMBER 9 P H Y S I C A L R E V I E W L E T T E R S 30 AUGUST 1999
FIG. 2. (a) Side and (b) top views of Ga�Si(112) with
vacancy period N � 5. The fully relaxed coordinates are
from first-principles total-energy minimization. (c) Bonding
chain of Ga (dark) and Si (light) atoms. (d) One-dimensional
Frenkel-Kontorova model representing this Ga-Si chain. The
(horizontal) atomic displacements, uj , are defined relative to
the ideal positions (shown by thin grid lines) of the substrate
atoms; vertical displacements represent the individual substrate-
strain energies, �1�2�kju

2
j , appearing in Eq. (1).

only one dimer, resulting in an extra Si dangling bond; in-
deed, there are no adjacent vacancies visible in Fig. 1. In
this way, VLs on Ga�Si(112) are essentially constrained
to have a fixed width of one vacancy.

To construct a microscopic model for the interactions
between VLs we make three simplifying assumptions
about their ground-state structure. (1) We take the VLs
to be perfectly straight; this turns a two-dimensional sur-
face problem into an effective one-dimensional system.
(2) We assume this one-dimensional system to be periodic
with a single vacancy per unit cell; that is, the vacancy
separation is taken to be L � Na, where N is an inte-
ger and a is the surface lattice constant. (3) Full struc-
tural relaxation within the local-density approximation,
described below, shows that the Si substrate atoms are
essentially unperturbed from their ideal locations (Fig. 2
shows the relaxed geometry for N � 5; substrate atoms
are white). Thus, we consider the vacancy-vacancy inter-
action to be mediated entirely by the bonding chain of Si
and Ga atoms shown in Fig. 2(c).

We now map this Ga-Si chain (with vacancy period
N) onto a one-dimensional chain of harmonic springs
connecting N Si atoms and N 2 1 Ga atoms in a unit cell
of length Na, as shown in Fig. 2(d). The bonding of each
atom, j, to the substrate is also taken to be harmonic, with
potential minima at the ideal substrate positions. This is a
variant of the Frenkel-Kontorova (FK) model, which has
been widely used to study complex static and dynamical
phenomena arising from purely local interactions. Within
the FK model, the total (potential) energy is

U �
2N22X
i�0

1
2

Ki�bi 2 b
eq
i �2 1

2N21X
j�1

1
2

kju
2
j . (1)

Here the one-dimensional atomic displacements uj are
defined with respect to the ideal positions of the substrate
atoms, �a�2�j, and the corresponding spring lengths
bi are defined in Fig. 2(d). This FK model has six
parameters: within each unit cell, one spring represents
the Si-Si bond at the vacancy (with spring constant KSi

and equilibrium length b
eq
Si ), while the remaining 2N 2 2

springs represent the Ga-Si bonds (with spring constant
K and equilibrium length beq). Two different substrate
spring constants, kSi and kGa, represent the bonds from Si
and Ga atoms in the chain to the rigid substrate.

To solve for the displacement field that minimizes the
FK energy, we first consider the force equations for atoms
away from the vacancies, and then apply the boundary
conditions due to the vacancies. In equilibrium, the force
on atom j is given by

Fj � 0 � K�2uj 2 uj21 2 uj11� 1 kjuj , (2)

which can be written for the Si or Ga sublattice as

��2K 1 kGa� �2K 1 kSi� 2 2k2�uj � K2�uj12 1 uj22� .

(3)

In the continuum limit (large N) this becomes a simple
differential equation,

�b 2 1�u�x� � �a�2�2u00�x� , (4)

where we have defined

b �

√
1 1

kSi

2K

! √
1 1

kGa

2K

!
. (5)

Equation (4) shows that the continuum displacement field,
u�x�, has an exponential solution with the decay length
�a�2��

p
b 2 1. Note that for the case of weak binding

to the substrate, kj ø K , this decay length reduces simply
to

p
K�k �a�2�, where k is the average substrate potential.

For the discrete case (arbitrary N), Eq. (3) provides a
recurrence relation whose solutions have the form

uj � c
Si,Ga
1 e2lj 1 c

Si,Ga
2 e22lj , (6)

where e62l are given by

e62l �
p

b 6
p

b 2 1 . (7)

The general form of the discrete solutions is again
seen to be exponential, although with a somewhat more
complicated form for the (dimensionless) decay length,
�2l�21. It is easy to verify by Taylor expansion that
for weak substrate binding we again recover the correct
limiting behavior, �2l�21 !

p
K�k.
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Equation (2) provides the following relationship be-
tween the four coefficients cSi

n and cGa
n , which are used

for the Si and Ga sites, respectively:

cGa
n

cSi
n

�

s
1 1 kSi�2K
1 1 kGa�2K

. (8)

It is convenient to introduce a dimensionless parameter,
L, defined by equating the right-hand side of Eq. (8) with
exp�2L�. The deviation of L from zero measures the rela-
tive difference in strength between Si- and Ga-substrate
binding, and will give rise (see below) to oscillations in
the strain field around the simple exponential behavior
found in the continuum limit.

The remaining unknowns are determined by the bound-
ary conditions at the vacancies. By applying these we ar-
rive at the exact closed-form solution for the displacement
field and corresponding bond lengths. For example, the
Si-Si vacancy-bond length, as a function of the vacancy
period, can be written as

b0�N� � a 2
2u`

1

1 1 j�coth�2�N 2 1�l� 2 1�
, (9)

where u`
1 and j (both positive) are combinations of the

various FK parameters [5]. The Ga-Si bond lengths have
a more complicated form due to the two different substrate
potentials,

bi�N� �
a
2

1 4c� coshL sinhl cosh��2i 2 2N 1 1�l�

6 sinhL coshl sinh��2i 2 2N 1 1�l�� ,

(10)

where the last term (present only when L fi 0) is positive
and negative for even- and odd-numbered bonds, respec-
tively. The magnitude of the strain field is given by the
prefactor c � �1�2� �b0 2 a�e2L csch�2�1 2 N�l�. It is
evident from Eqs. (9) and (10) that the strain field is char-
acterized by a single length scale, �2l�21, which describes
both the relaxation of each bond with respect to the dis-
tance, i, from a vacancy, and the relaxation of all strains
with respect to the vacancy period, N .

To apply this general solution to Ga�Si(112) we must
determine numerical values for the six FK parameters (two
bond lengths, beq and b

eq
Si , and four spring constants, K ,

KSi, kGa, kSi) appearing in Eq. (1). We do this either ana-
lytically from the Stillinger-Weber potential (for Si-Si pa-
rameters) or numerically from first-principles total-energy
calculations (for Ga-Si parameters). These calculations
were performed in a double-sided slab geometry with six
layers of Si and a vacuum region equivalent to five layers
of Si. Total energies and forces were calculated within
the local-density approximation (LDA) with gradient cor-
rections [6], using Troullier-Martins pseudopotentials and
a plane-wave basis with a kinetic-energy cutoff of 8 Ry,
as implemented in the FHI96MD code [7]. Total energies
were completely converged with respect to Brillouin-zone
1820
sampling. Full structural relaxation was performed on all
atoms except those in the innermost double layer until the
surface energies were converged to 0.1 meV�Å2.

Using the equilibrium structure of Ga�Si(112) with no
vacancies we find that, for small displacements, kSi �
2.0 eV�Å2 and kGa � 20.7 eV�Å2. The negative spring
constant here indicates that in the absence of defects the
Ga sublattice is at a point of unstable equilibrium—a find-
ing confirmed by our LDA results for finite N (below).
From calculations on isolated infinite Ga-Si chains, we ob-
tain K � 9.8 eV�Å2 and beq � 2.00 Å. This equilibrium
bond length implies a 4% compressive epitaxial strain with
respect to the Si substrate, and contributes to the driving
force for vacancy formation in Ga�Si(112). Finally, by
expanding the radial part of the Stillinger-Weber potential
about the LDA vacancy bond length for N � 2, we obtain
KSi � 5.5 eV�Å2 and b

eq
Si � 2.25 Å.

We now compare the structural predictions of the FK
model to those of first-principles calculations. Using the
LDA approach described above, supercells with vacancy
periodicities from N � 2 to 8 were completely relaxed.
Figure 3 shows the FK and LDA results for the vacancy-
bond length vs N and for the Ga-Si chain bond lengths
for N � 8. The agreement is remarkably good, especially
considering the simplicity of the model. Note the oscilla-
tory behavior of the Ga-Si FK bond lengths—due to the
unequal Ga- and Si-substrate binding strengths—which is
strikingly confirmed by the LDA results.

We turn next to the description of strain energetics
and, thereby, the effective VL interaction. Within the FK
model, we use Eqs. (9) and (10) to evaluate the strain
energy, U, for arbitrary N . By exploiting the fact that the
sums over atomic sites are geometric series, we obtain a
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FIG. 3. Equilibrium bond lengths from the FK model and
LDA. Left: Si-Si vacancy-bond length vs vacancy period.
Right: Ga-Si bond length vs “bond number” [relative distance
from the vacancy bond, as defined in Fig. 2(d)].
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closed-form solution for U�N� [5]. It is important to note
that energies for different N are not directly comparable,
since the number of Ga atoms per unit length varies with
N . In general, this is resolved by considering the surface
free energy (per unit area),

g�N� � �NA�21�Et�N� 2 �N 2 1�mGa��2 , (11)

where Et�N� is the (LDA) total energy for a Ga�Si(112)
cell with vacancy period N , and mGa is the Ga chemical
potential (the energy per atom of bulk Ga). The chemical
potential is not derivable within the FK model, but must
be included “by hand.” We do this by defining gFK�N�
analogously to Eq. (11), with a fictitious chemical po-
tential adjusted to give identical VL formation energies,
´f , within the FK model and LDA (which gives ´f �
243 meV�Å).

In Fig. 4 we show the resulting FK and LDA surface
energies, relative to the limit of large N . The LDA energy
minimum occurs at N � 6, in excellent agreement with
the experimental results for this system, while the FK
minimum is only slightly higher, at N � 8. The energy
scale for the effective VL interaction is extremely small:
relative to infinite separation between vacancies, the LDA
energy minimum is only of order 2 meV�Å2, while the FK
result is about half this value. In general, the agreement
between the two results is quite remarkable, considering
the length scale of the vacancy spacing, the smallness of the
energy scale, and the extreme simplicity of the FK model.

By analyzing the individual contributions to the FK
strain energy, it is now simple to identify the domi-
nant physical mechanism determining the equilibrium VL
spacing. In Fig. 4 we plot (as small dots) only those terms
in Eq. (1) representing strains within the Ga-Si bond-
ing chain, and exclude the contribution from the Si-Si
rebonded dimer as well as all interactions between the
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FIG. 4. Relative surface energies, g�N�, vs vacancy density,
calculated within the FK model and LDA.
chain and substrate atoms. It is clear that this Ga-Si
chain strain completely dominates the energetics for all
physically relevant densities. This result has two impor-
tant implications. (1) The role of the rebonded Si dimers,
although obviously crucial for eliminating the dangling
bonds created by the Ga vacancies, plays no further sig-
nificant energetic role in determining the equilibrium VL
spacing in Ga�Si(112). This is quite different from the
role of the rebonded Ge-dimer vacancies in Ge�Si(001),
for which the tensile stress contribution has been shown
to cancel the compressive contribution from the over-
layer only at the proper density [2]. (2) While a low
density of Ga vacancies allows for relief of compressive
strain, when their density becomes too high, part of the
Si-Ga bonding chain experiences tensile strain—which
acts as a repulsive interaction between VLs. This effect is
readily visible in the right panel of Fig. 3. Relative to the
equilibrium Si-Ga bond length of 2.00 Å, bonds far from
the vacancy (numbered 5–7) are compressively strained,
bonds near the vacancy (3–4) are essentially unstrained,
but bonds very close to the vacancy (1–2) are tensilely
strained. This tensile contribution begins to dominate the
surface energy at about N , 5.

In summary, we have developed a Frenkel-Kontorova
model to analyze the microscopic origins of vacancy-
line interactions on Ga�Si(112). The model reveals that
the mechanism of strain relaxation in this submonolayer
adsorbate system is quite complex. In particular, we
have identified the microscopic origins of attractive and
repulsive interactions between vacancy lines: both are
mediated by a combination of compressive and tensile
bond strains within a single chain of Ga and Si atoms. The
sum of these strain energies is minimized at a vacancy-line
density very close to the experimentally observed value.
In general, we expect the future analysis of similar strain-
induced self-organized adsorbate systems to benefit from
this type of simple but accurate analytical model.
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